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COURSE OBJECTIVES:
e Tounderstand and develop Y bus matrices
e Togive the knowledge on per unit system.
e Tounderstand and develop Z bus matrices
e Togive the knowledge on faults analysis.
e Give the knowledge of iterative method in power systems.
e Tounderstand the concepts load flow studies.

UNIT I:

PER UNIT REPRESENTATION OF POWER SYSTEMS: The one-line diagram, impedance and
reactance diagrams, per unit quantities, changing the base of per unit quantities, advantages of per
unit system.

POWER SYSTEM NETWORK MATRICES: Bus Incidence Matrix, Y-bus formation by Direct
andSingular Transformation Methods, Numerical Problems.

UNIT II:

FORMATION OF Z-BUS: Partial network, Algorithm for the Modification of Z Bus Matrix for
addition element for the following cases: Addition of element from a new bus to reference, Addition
of element from a new bus to an old bus, Addition of element between an old bus to reference and
addition of element between two old buses

UNIT-I1I

SYMMETRICAL COMPONENTS AND FAULT CALCULATIONS: Significance of positive,
negative and zero sequence components, sequence impedances and sequence networks, fault
calculations, sequence network equations, single line to ground fault, line to line fault, double line
to ground fault, three phase faults, faults with fault impedance.

UNIT-IV

LOAD FLOW STUDIES I: Derivation of Static load flow equations. Load Flow Solutions Using
Gauss Seidel Method: Acceleration Factor, Load flow solution with and without P-V buses,
Algorithm and Flowchart. Numerical Load flow Solution for Simple Power Systems (Max. 3-Buses):
Determination of Bus Voltages, Injected Active and Reactive Powers (Sample Onelteration only) and
finding Line Flows/Losses for the given Bus Voltages.

UNIT-V

LOAD FLOW STUDIES II: Numerical Load flow Solution for Simple Power Systems (Max. 3-
Buses): Determination of Bus Voltages, Injected Active and Reactive Powers (One Iteration only)
and finding Line Flows/Losses for the given Bus Voltages, Newton Raphson Method (Polar
coordinates only): Load Flow Solution with and without P-V Buses, Derivation of Jacobian Elements,
Fast Decoupled Method.
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COURSE OUTCOMES:
At the end of the course the student will be able to:
e Understand the concept of per unit system and faults in power systems.
e Evaluate the admittance matrix of a given power systems.
e Analyze the power system using iterative methods.
e Understand the concept of load flow studies in power system.
e Understand the PF and computer control in power system.



UNIT-I

PER UNIT REPRESENTATION OF POWER SYSTEMS

One Line Diagram

In practice, electric power systems are very complex and their size is
unwieldy. Itis very difficult to represent all the components of the system on
a single frame. The complexities could be in terms of various types of
protective devices, machines (transformers, generators, motors, etc.), their
connections (star, delta, etc.), etc. Hence, for the purpose of power system
analysis, a simple single phase equivalent circuit is developed called, the one
line diagram (OLD) or the single line diagram (SLD). An SLD is thus, the
concise form of representing a given power system. Itis to be noted that agiven
SLD will contain only such data that are relevant to the system analysis/study
under consideration. For example, the details of protective devices need not
be shown for load flow analysis nor it is necessary to show the details of shunt
values for stability studies.

Symbols used for SLD

Various symbols are used to represent the different parameters and machines
as single phase equivalents on the SLD,. Some of the important symbols
used are as listed in the table of Figure 1.
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Figure 1. TABLE OF SYMBOLS FOR USE ON SLDS




Example system

Consider for illustration purpose, a sample example power system and data as

under:

Generator 1: 30 MVA, 105 KV, X’=1.6 ohms, Generator 2: 15 MVA, 6.6
KV, X’=

ohms, Generator 3: 25 MVA, 6.6 KV, X”= 0.56 ohms, Transformer 1 (3-phase): 15
MVA, 33/11 KV, X=15.2 ohms/phase on HT side, Transformer 2 (3-phase): 15 MVA,
33/6.2 KV, X=16.0 ohms/phase on HT side, Transmission Line: 20.5 ohms per phase,
Load A: 15 MW, 11 KV, 0.9 PF (lag); and Load B: 40 MW, 6.6 KV, 0.85 PF (lag). The
corresponding SLD incorporating the standard symbols can be shown asin figure 2.

|
|
eguivalent

Generzater i X Bus2

I w
Synchroncus |
[ reaciance | Bus ! %
| Xy | Autotransformer |

04

I £o0N— DO
; g il il
| e |
| f

I Internal
voltage

[ 3
' |
| Buscharging Shunt
capacitance reactor Transmission S o
\ 23
| line 1
! - Switched
J

O~

(M= R - Ry capasitor
= 12
ransiission -
line
iXy, F
(/N Prase-shift
\/J transformer
TCUI f 4
L Parallel
e il transmission lines
Trensmission
ne
Busd E oy 3
R Xis Bus 4
l g
V A
Load 2 2 i
Ps + 0« wl /,’ Wl y, Load
\ / A i PitiQy
L y ’ ’+"‘, Continuously
= Lirechargng + « Tl viriable
capacitance reactive power

(SVQ0)

5‘% ?;335%% Line ﬁ;%%_%@@:z

Figure 2. SAMPLE SYSTEM OLD




It is observed here, that the generators are specified in 3-phase MVA, L-L voltage
and per phase Y-equivalent impedance, transformers are specified in 3- phase
MVA, L-L voltage transformation ratio and per phase Y-equivalent impedance
on any one side and the loads are specified in 3-phase MW, L-L voltage and power
factor.

Impedance Diagram

The impedance diagram on single-phase basis for use under balanced conditions
can be easily drawn from the SLD. The following assumptions are made in
obtaining the impedance diagrams.

Assumptions:

1.

N

The single phase transformer equivalents are shown as ideals with impedances on
appropriate side (LV/HV),

The magnetizing reactances of transformers are negligible,

The generators are represented as constant voltage sources with series resistance or
reactance,

The transmission lines are approximated by their equivalent ©-Models,

The loads are assumed to be passive and are represented by a series branch of
resistance or reactance and

Since the balanced conditions are assumed, the neutral grounding impedances do not
appear in the impedance diagram.

Example system

As per the list of assumptions as above and with reference to the system of figure
2, the impedance diagram can be obtained as shown in figure 3.
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Figure 3. IMPEDANCE DIAGRAM



Reactance Diagram

With some more additional and simplifying assumptions, the impedance diagram
can be simplified further to obtain the corresponding reactance diagram. The
following are the assumptions made.

Additional assumptions:

» The resistance is often omitted during the fault analysis. This causes a very
negligible error since, resistances are negligible

» Loads are Omitted

» Transmission line capacitances are ineffective &

» Magnetizing currents of transformers are neglected.

Example system

as per the assumptions given above and with reference to the system of figure 2
and figure 3, the reactance diagram can be obtained as shown in figure 4.

K&j- Bus

Figure 4. REACTANCE DIAGRAM

Note: These impedance & reactance diagrams are also refered as the Positive Sequence
Diagrams/ Networks.

Per Unit Quantities

during the power system analysis, it is a usual practice to represent current,
voltage, impedance, power, etc., of an electric power system in per unit or
percentage of the base or reference value of the respective quantities. The
numerical per unit (pu) value of any quantity is its ratio to a chosen base value
of the same dimension. Thus a pu value is a normalized quantity with respect to
the chosen base value.

Definition: Per Unit value of a given quantity is the ratio of the actual value in any given
unit to the base value in the same unit. The percent value is 100 times the pu value.
Both the pu and percentage methods are simpler than the use of actual values. Further,
the main advantage in using the pu system of computations is that the result



that comes out of the sum, product, quotient, etc. of two or more pu values is
expressed in perunit itself.



In an electrical power system, the parameters of interest include the current,
voltage, complex power (VA), impedance and the phase angle. Of these, the phase
angle is dimensionless and the other four quantities can be described by knowing
any two of them. Thus clearly, an arbitrary choice of any two base values will
evidently fix the other base values.

Normally the nominal voltage of lines and equipment is known along with the
complex power rating in MVVA. Hence, in practice, the base values are chosen for
complex power (MVA) and line voltage (KV). The chosen base MV A is the same
for all the parts of the system. However, the base voltage is chosen with reference
to a particular section of the system and the other base voltages (with reference to
the other sections of the systems, these sections caused by the presence of the
transformers) are then related to the chosen one by the turns- ratio of the
connecting transformer.

If Ib is the base current in kilo amperesand Vb, the base voltage in kilovolts, then the
base MVA is, Sb= (Vblb). Then the base values of current & impedance are given by

Base current (kA), Ib = MVAb/KVh

= Sb/Vp (1.1)
Base impedance, Zb = (Vu/lp)
= (KVu? | MVA) (1.2)

Hence the per unit impedance is given by

Zpu = Zohms/Zb
= Zohms (MVAL/KV?) (1.3)

In 3-phase systems, KV is the line-to-line value & MV Ap is the 3-phase MVA.
[1-phase MVA = (1/3) 3-phase MVA|].

Changing the base of a given pu value:

It is observed from equation (3) that the pu value of impedance is proportional
directly to the base MVA and inversely to the square of the base KV. If Zpynew
is the pu impedance required to be calculated on a new set of base values:
MVApNeW & KVpNew from the already given per unit impedance Zpu©ld,
specified on the old set of base values, MVAROId & KVpold | then we have

Z new=Z °9(MVA new/MVA old) (KV old/Ky new)2 (1.4)
pu pu b b b b

On the other hand, the change of base can also be done by first converting the
given pu impedance to its ohmic value and then calculating its pu value on the
new set of base values.

Merits and Demerits of pu System
Following are the advantages and disadvantages of adopting the pu system of
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Merits

» The pu value is the same for both 1-phase and & 3-phase systems

» The pu value once expressed on a proper base, will be the same when refereed to
either side of the transformer. Thus the presence of transformer is totally
eliminated

» The variation of values is in a smaller range 9nearby unity). Hence the errors
involved in pu computations are very less.

» Usually the nameplate ratings will be marked in pu on the base of the name
plate ratings, etc.

Demerits:

» If proper bases are not chosen, then the resulting pu values may be highly absurd
(such as 5.8 pu, -18.9 pu, etc.). This may cause confusion to the user. However,
this problem can be avoided by selecting the base MVA near the high-rated
equipment and a convenient base KV in any section of the system.

pu Impedance / Reactance Diagram

for a given power system with all its data with regard to the generators,
transformers, transmission lines, loads, etc., it is possible to obtain the
corresponding impedance or reactance diagram as explained above. If the
parametric values are shown in pu on the properly selected base values of the
system, then the diagram is refered as the per unit impedance or reactance
diagram. In forming a pu diagram, the following are the procedural steps
involved:

Obtain the one line diagram based on the given data

Choose a common base MVA for the system

Choose a base KV in any one section (Sections formed by transformers)
Find the base KV of all the sections present

Find pu values of all the parameters: R, X, Z, E, etc.

Draw the pu impedance/ reactance diagram.

oukrwnE

POWER SYSTEM NETWORK MATRICES
1. FORMATION OF Ygus AND Zgus

The bus admittance matrix, YBUS plays a very important role in computer aided power
system analysis. It can be formed in practice by either of the methods as under:

1. Rule of Inspection

2. Singular Transformation

3. Non-Singular Transformation

4. ZBUS Building Algorithms, etc.

The performance equations of a given power system can be considered in three different
frames of reference as discussed below:

Frames of Reference:
Bus Frame of Reference: There are b independent equations (b = no. of buses) relating the




bus vectors of currents and voltages through the bus impedance matrix and bus admittance
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matrix;

EBUS = ZBUS IBUS

IBUS = YBUS EBUS

Branch Frame of Reference: There are b independent equations (b = no. of branches of a
selected Tree sub-graph of the system Graph) relating the branch vectors of currents and
voltages through the branch impedance matrix and branch admittance matrix:

EBR = ZBR IBR

IBR=YBREBR

Loop Frame of Reference: There are b independent equations (b = no. of branches of a
selected Tree sub-graph of the system Graph) relating the branch vectors of currents and
voltages through the branch impedance matrix and branch admittance matrix:

ELOOP =ZLOOP ILOOP
ILOOP =YLOOP ELOOP

Of the various network matrices refered above, the bus admittance matrix (YBUS) and the
bus impedance matrix (ZBUS) are determined for a given power system by the rule of
inspection as explained next.

Rule of Inspection
Consider the 3-node admittance network as shown in figure5. Using the basic branch
relation: [ = (YV), for all the elemental currents and applying Kirchhoff*s Current

Law principle at the nodal points, we get the relations as under:

At node 1: 11 =Y1V1 + Y3 (V1-V3) + Y6 (V1 - V2)
At node 2: 12 =Y2V2 + Y5 (V2-V3) + Y6 (V2 - V1)
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At node 3: 0 = Y3 (V3-V1) + Y4V3 + Y5 (V3 - V2) (12)

AAN\N
oIl

Fig. 3 Example System for finding YBUS

These are the performance equations of the given network in admittance form and
they can be represented in matrix form as:

I] = (Y|+Y3 +Y6) -Yﬁ -Y3 V;
I = -Y¢ (Y2+Ys5+Ye) -Ys5 V,
0 = -Y;s -Ys (Ys+Y4+Ys5) V3 (13)

In other words, the relation of equation (9) can be represented in the form

IBUS = YBUS EBUS (14)
Where, YBUS is the bus admittance matrix, IBUS & EBUS are the bus current and bus
voltage vectors respectively. By observing the elements of the bus admittance matrix, YBUS
of equation (13), it is observed that the matrix elements can as well be obtained bya simple
inspection of the given system diagram:

Diagonal elements: A diagonal element (Yii) of the bus admittance matrix, YBUS, is equal
to the sum total of the admittance values of all the elements incident at the bus/node i,

Off Diagonal elements: An off-diagonal element (Yij) of the bus admittance matrix,YBUS,
is equal to the negative of the admittance value of the connecting element present between
the buses I and j, if any. This is the principle of the rule of inspection. Thus the algorithmic
equations for the rule of inspection are obtained as:

Yii=Svyij(j=12,......n)
Yij=-yij(j=12,......n) (15)

For i = 1,2,....n, n = no. of buses of the given system, yij is the admittance of element
connected between buses i and j and yii is the admittance of element connected between bus
i and ground (reference bus).
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Bus impedance matrix

In cases where, the bus impedance matrix is also required, it cannot be formed by direct
inspection of the given system diagram. However, the bus admittance matrix determined
by the rule of inspection following the steps explained above, can be inverted to obtain the
bus impedance matrix, since the two matrices are interinvertible.

Note: It isto be noted that the rule of inspection can be applied only to those power systems
that do not have any mutually coupled elements.

Examples on Rule of Inspection:

Example 6: Obtain the bus admittance matrix for the admittance network shown aside by
the rule of inspection

@ P4 @
o} ®
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Example 7: Obtain YBUS for the impedance network shown aside by the rule of inspection.
Also, determine YBUS for the reduced network after eliminating the eligible unwanted
node. Draw the resulting reduced system diagram.
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SINGULAR TRANSFORMATIONS

The primitive network matrices are the most basic matrices and depend purely on the
impedance or admittance of the individual elements. However, they do not contain any
information about the behaviour of the interconnected network variables. Hence, it is
necessary to transform the primitive matrices into more meaningful matrices which can
relate variables of the interconnected network.
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Bus admittance matrix, YBUS and Bus impedance matrix, ZBUS

In the bus frame of reference, the performance of the interconnected network is described
by n independent nodal equations, where n is the total number of buses (n+1nodes are
present, out of which one of them is designated as the reference node).

For example a 5-bus system will have 5 external buses and 1 ground/ ref. bus). The
performance equation relating the bus voltages to bus current injections in bus frame of
reference in admittance form is given by

IBUS = YBUS EBUS 17
Where EBUS = vector of bus voltages measured with respect to reference bus
IBUS = Vector of currents injected into the bus
YBUS = bus admittance matrix
The performance equation of the primitive network in admittance form is given by
i+j=[ylv
Pre-multiplying by At (transpose of A), we obtain

Ati+Atj=At[y]v (18)
However, as per equation (4),

Ati=0,

since it indicates a vector whose elements are the algebraic sum of element currents incident
at a bus, which by Kirchhoff"s law is zero. Similarly, At j gives the algebraic sum of all
source currents incident at each bus and this is nothing but the total current injected at the
bus. Hence,

Atj=IBUS (19)
Thus from (18) we have, IBUS = At [y] v (20)
However, from (5), we have

v=AEBUS

And hence substituting in (20) we get,

IBUS = At [y] AEBUS (21)
Comparing (21) with (17) we obtain,

YBUS = At[y] A (22)
The bus incidence matrix is rectangular and hence singular. Hence, (22) gives a singular
transformation of the primitive admittance matrix [y]. The bus impedance matrix is given

by,

ZBUS = YBUS! (23)
Note: This transformation can be derived using the concept of power invariance, however,
since the transformations are based purely on KCL and KVL, the transformation will
obviously be power invariant.
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Examples on Singular Transformation:

Example 8: For the network of Fig E8, form the primitive matrices [z] & [y] and obtain the
bus admittance matrix by singular transformation. Choose a Tree T(1,2,3). The data is given

in Table ES.

[ =]

-
et
.....

4
Fig E8 System for Example-8

Table E8: Data for Example-8

Elements | Self impedance | Mutual impedance
1 j 0.6 -
2 j 0.5 j 0.1(with element 1)
3 j0.5 -
4 j0.4 j 0.2 (with element 1)
5 j0.2 -
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Solution:

The bus incidence matrix is formed taking node 1 as the reference bus.

1
0
0

—1
1

The primitive incidence matrix is given by

- j0.6 jO.1

0
—1
1
0
0

0

0
-1

0
—1

jO.1
0.0

j0.5
0.0

0.0
0.0

j0.2
0.0

0.0
0.0
j0.5
0.0
0.0

j0.2

0.0
0.0

0.0 |

0.0
0.0

j0.4

0.0
j0.2|

0.0

The primitive admittance matrix [y] = [z]-1 and given by,

lyl=

— j2.0833
j0.4167
0.0
j1.0417
0.0

j0.4167
— j2.0833
0.0
— j0.2083
0.0

0.0
0.0
— j2.0
0.0
0.0

j1.0417

— j0.2083
0.0

— j3.0208
0.0

The bus admittance matrix by singular transformation is obtained as

0.0
0.0
0.0
0.0

- j5.0]

— j8.0208
j0.2083
5.0

j0.2083
— j4.0833
j2.0

5.0
j2.0
~ j7.0

Ypus=A'[y]A =

j0.2713  j0.1264  j0.2299
Zgus = Yrus' = | jO.1264 j0.3437 j0.1885
j0.2299 j0.1885 j0.3609
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SUMMARY

The formulation of the mathematical model is the first step in obtaining the solution of any
electrical network. The independent variables can be either currents or voltages.
Correspondingly, the elements of the coefficient matrix will be impedances oradmittances.

Network equations can be formulated for solution of the network using graph theory,
independent of the nature of elements. In the graph of a network, the tree-branches and links
are distinctly identified. The complete information about the interconnection of the network,
with the directions of the currents is contained in the bus incidence matrix.

The information on the nature of the elements which form the interconnected network is
contained in the primitive impedance matrix. A primitive element can be represented in
impedance form or admittance form. In the bus frame of reference, the performance of the
interconnected system is described by (n-1) nodal equations, where n is the number of nodes.
The bus admittance matrix and the bus impedance matrix relate the bus voltages and
currents. These matrices can be obtained from the primitive impedance and admittance
matrices.

FORMATION OF BUS IMPEDANCE MATRIX

NODE ELIMINATION BY MATRIX ALGEBRA

Nodes can be eliminated by the matrix manipulation of the standard node equations.
However, only those nodes at which current does not enter or leave the network can be
considered for such elimination. Such nodes can be eliminated either in one group or by
taking the eligible nodes one after the other for elimination, as discussed next.

CASE-A: Simultaneous Elimination of Nodes:

Consider the performance equation of the given network in bus frame of reference in
admittance form for a n-bus system, given by:

IBUS = YBUS EBUS (1)

Where IBUS and EBUS are n-vectors of injected bus current and bus voltages and YBUS is
the square, symmetric, coefficient bus admittance matrix of order n. Now, of the n buses
present in the system, let p buses be considered for node elimination so that the reduced
system after elimination of p nodes would be retained with m (= n-p) nodes only. Hence
the corresponding performance equation would be similar to (1) except that the coefficient
matrix would be of order m now, i.e.,

IBUS = YBUS™ EBUS )

Where YBUS™Y is the bus admittance matrix of the reduced network and the vectors

10
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IBUS and EBUS are of order m. It is assumed in (1) that IBUS and EBUS are obtained with
their elements arranged such that the elements associated with p nodes to be eliminated are
in the lower portion of the vectors. Then the elements of YBUS also get located accordingly
so that (1) after matrix partitioning yields,

m

p
IBL'S-m o YA YB EBL*S-m

]l%l'S-p P Y(.‘ YD EBL’S-p
(3)

Where the self and mutual values of YA and YD are those identified only with the nodes to
be retained and removed respectively and YC=YBt is composed of only the corresponding
mutual admittance values, that are common to the nodes mand p.

Now, for the p nodes to be eliminated, it is necessary that, each element of the vector IBUS-
p should be zero. Thus we have from (3):

IBUS-m = YaEgus-m+ YsEsusp
IBUS-p = Yc Esusm+ Yp EBusp =0

(4)

Solving,
Egusp=- YD™Y¢ Egus-m

()
Thus, by simplification, we obtain an expression similar to (2) as,
Isusm={Ya-YgYp-1Yc} Egus.m
(6)
Thus by comparing (2) and (6), we get an expression for the new bus admittance matrix in
terms of the sub-matrices of the original bus admittance matrix as:
Ygusnew = {Ya— YeYp-1Yc}

()
This expression enables us to construct the given network with only the necessary nodes
retained and all the unwanted nodes/buses eliminated. However, it can be observed from
(7) that the expression involves finding the inverse of the sub-matrix YD (of order p). This
would be computationally very tedious if p, the nodes to be eliminated is very large,
especially for real practical systems. In such cases, it is more advantageous to eliminate the
unwanted nodes from the given network by considering one node only at a time for
elimination, as discussed next.

CASE-B: Separate Elimination of Nodes:

Here again, the system buses are to be renumbered, if necessary, such that the node to be
removed always happens to be the last numbered one. The sub-matrix YD then would be a
single element matrix and hence it inverse would be just equal to its own reciprocal value.
Thus the generalized algorithmic equation for finding the elements of the new bus
admittance matrix can be obtained from (6) as,

Yij "W =Yijod_YinYnj/Ynn"ij=12,...... n. (8)

11
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Each element of the original matrix must therefore be modified as per (7). Further, this
procedure of eliminating the last numbered node from the given system of n nodes is to be
iteratively repeated p times, so as to eliminate all the unnecessary p nodes from the original
system.

Examples on Node elimination:

Example-1: Obtain YBUS for the impedance network shown below by the rule of
inspection. Also, determine YBUS for the reduced network after eliminating the eligible
unwanted node. Draw the resulting reduced system diagram.

o

O FG‘Q’\\E&__J
& s (m\ﬁ

o
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The admittance eauivalent network is as follows:

The bus admittance matrix is obtained by Rol as:

98 5 4
Yeus=j| 5 -16 10
4 10-14

The reduced matrix after elimination of node 3 from the given system is determined as per the
equation:

12
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New -1
Yeus  =Ya-YsYp Y

~

n/n / Z
new_ / -j 8.66 j7.86

YBUS -
5| j7.86 | -j8.66

Alternatively,

W Id 1]
ijm“ > YijU( -Y;; Y3j /Y3 v 1,] = 1..2.

Yii=Yu-YiaYa/ Yz =-j8.66
Y2 = Y- YaYi/ Yz =-j8.66
Yo=Y =Yi- YiaY:/Y33=j7.86

Thus the reduced network can be obtained again by the rule of inspection as shown below.

©)
fia:
-l -C?;j‘a%e
T8 -dOa% *60*% 4 s

—=

-

o O ®,
@
*&W%CD_’f —~ 1B ’ @ '&0-‘3
(A&“\- “\\\o)

Example-2: Obtain YBUS for the admittance network shown below by the rule of
inspection. Also, determine YBUS for the reduced network after eliminating the eligible
unwanted node. Draw the resulting reduced system diagram.

13
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YBUS= 2 0 -j60 0 j72 = YA YB

31j20 0 |-j72 | jSO Ye Yo

nn 1 2

V= 1| -i32.12 | j10.32

51 j10.32 | -j51.36

Thus the reduced system of two nodes can be drawn by the rule of inspection as under:



Power System -I11 | R20A0209




Power System 111 | R20A0209

UNIT 11
FORMATION OF Z-BUS

ZBUS buildi
FORMATION OF BUS IMPEDANCE MATRIX

The bus impedance matrix is the inverse of the bus admittance matrix. An alternative method
is possible, based on an algorithm to form the bus impedance matrix directly from system
parameters and the coded bus numbers. The bus impedance matrix is formedadding one
element at a time to a partial network of the given system. The performance equation of the
network in bus frame of reference in impedance form using the currents as independent
variables is given in matrix form by

ETI?M) = [Z bus ]I_hm‘ (9)

When expanded so as to refer to a n bus system, (9) will be of the form

Ly=Z,1,+Z,I,+... +Z, 1.+ 2,1,

E =Z 1 +Z,I,+.... +Z, 1, +..+Z, 1

En = Zr:lI] + er.? mnoon
Now assume that the bus impedance matrix Zbus is known for a partial network of m buses
and a known reference bus. Thus, Zbus of the partial network is of dimension mxm. If now
a new element is added between buses p and q we have the following twopossibilities:

(1) p is an existing bus in the partial network and q is a new bus; in this case p-q is a

branch added to the p-network as shown in Fig 1a, and

I+ +Z I +..+Z I (10)
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(i) both p and g are buses existing in the partial network; in this case p-q is a link

added to the p-network as shown in Fig 1b.

o -

Fig 1a. Addition of branch p-q

=
o
Partial
Network
p i
Iyus
) —
O —=_ Ref.

Fig 1b. Addition of link p-q

Partial |
Network
D O —
ZBUS 14—
oo
9 [ Ref.

q
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If the added element ia a branch, p-g, then the new bus impedance matrix would be of order
m+1, and the analysis is confined to finding only the elements of the new row and column
(corresponding to bus-q) introduced into the original matrix. If the added element ia a link,
p-g, then the new bus impedance matrix will remain unaltered with regard to its order.
However, all the elements of the original matrix are updated to take account of the effect of
the link added.

ADDITION OF ABRANCH
Consider now the performance equation of the network in impedance form with the added
branch p-q, given by

El —Z” le Z]p Zlm Zlq-—ll—
E, Zyy Zy v Ly, v Ly, Ly | L
EP = Zpl Zpl pr Zﬂm ZPt{ 1/’ (1)
E 3 Z ml Z m?2 o Z mp At Z mm Z mgq m
_Eq ) _qu L v by v Ly Zf!"l__[q i

Itis assumed that the added branch p-q is mutually coupled with some elements of the partial
network and since the network has bilateral passive elements only, we have

Vector ypg-rs is not equal to zero and Zij= Zji " i,j=1,2,...m,q
(12)

To find Zqi:

The elements of last row-q and last column-qg are determined by injecting a current of 1.0
pu at the bus-i and measuring the voltage of the bus-q with respect to the reference bus-0, as
shown in Fig.2. Since all other bus currents are zero, we have from (11) that

Ek=2zkili=zki"k=1,2,...i......p,....m, q
(13)
Hence, Eq =Zqi;Ep=Zpi .........

Also, Eq=Ep -vpq ; so that Zqgi = Zpi -vpq"i=1,2,...i....... p,....m, _(Q
(14)

To find vpq:
In terms of the primitive admittances and voltages across the elements, the current through
the elements is given by
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Lg | _| Yeapa Ypars | Vog
v i = = (15)
Lys ) rs.pq ) rsrs | Vrs
l B e—
e 00
Partial
Network
v
< P9 >
l) — e————————)
q
i
ZBUS
[i=1pu
=

0 | T Ref.

Fig.2 Calculation for Zqi
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where i, is current through element p-g

i,.is vector of currents through elements of the partial network
v, is voltage across element p-¢

Y pg.pq 18 self —admittance of the added element

Y pars 18 the vector of mutual admittances between the added elements p-g and

elements r-s of the partial network.

v, is vector of voltage across elements of partial network.

Yys.pq 18 transpose of y ..

¥, is the primitive admittance of partial network.

Since the current in the added branch p-q, is zero. i, = 0. We thus have from (15).

b ™ YoasdVoi + T gits Vs = O (16)
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y pq.rs Vs

Solving, v, :——"— or
Y pa.pq
Y pors \E, —E,
"’pq:—)pq‘m( ) (17)
Y pa.pa
Using (13) and (17) in (14), we get
) rs _Z—ri _Z—si
Z,=Z, +- = ( ) i =12 HCE LY (18)
Y pa.pa

To find zqq:

The element Zyq can be computed by injecting a current of Ipu at bus-q, I; = 1.0 pu.

As before, we have the relations as under:

Ex = Zig Iy = Ziq ST Bllns

% TR | Y|

(19)

Hence; Es=7Zy4; Ep=Zpg ; Also, Eq=Ep - Vg 5 50 that Zyq = Zsq- Vg (20)

Since now the current in the added element is ipq =

Log = Ypa.paVpa T ¥YpgrsVes = =1
. Y pgrsV,
Solving, v, =—1+—"—
Y pa.pq
W ypq.rs (El _E:)
Pq <
Y pa.rq

Using (19) and (21) in (20), we get

A +l+§pq,rs(zrq_z )

99 rq

M
)qupq

Special Cases

.= —1.0, we have from (15)

e s

The following special cases of analysis concerning ZBUS building can be considered with

respect to the addition of branch to a p-network.
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Case (a): If there is no mutual coupling then elements of y are zero. Further. if p

is the reference node, then E,=0. thus,

Z5i=0 i=12.... 050 Eq
And Zor=10,
Hence. from (18) (22) Z4i=0 P2 s IBEEN
And Z =% \' (23)

Case (b): If there is no mutual coupling and if p is not the ref. bus, then, from (18)
and (22), we again have,

- - D] ansy —F
Z,=Z,. i=1l2.mi#q

== 2 A
Zrm _qu +“p4-pq (24)

ADDITION OF A LINK
Consider now the performance equation of the network in impedance form with the added
link p-1, (p-I being a fictitious branch and | being a fictitious node) given by

El Zn ZI’_' le Zlm Zlq 11
E.z Z_n Z:z Z'zp sz Z:q 12
E,\=\2, Z,, ~ 2, 2, Z,|]1, (25)
4," ml Zml =t mp = mm mq m
_E, | _Zu Zz: Zu sz Zu __[1 2

Itis assumed that the added branch p-q is mutually coupled with some elements of the partial
network and since the network has bilateral passive elements only, we have

Vector y,q.«is not equal to zero and Z;=7Z;;  Vij=1.2...m.l (26)

To find Zli:

The elements of last row-I and last column-1 are determined by injecting a current of 1.0
pu at the bus-i and measuring the voltage of the bus-g with respect to the reference bus-0, as
shown in Fig.3. Further, the current in the added element is made zero by connecting a
voltage source, el in series with element p-g, as shown. Since all other bus currents are zero,
we have from (25) that
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Ex=Zxli =74 W k= 2 obaaPesany | (27)
Hence, ei=Ei=%Zy . Ep=Zp: Ep=2Zy .........

Also, e =E;-Eq-Vpq:

So that Zy = Zpi- Zgi- Vpq V i=1.2,...00.0.ps...q,. ..M, # (28)

To find vpq:

In terms of the primitive admittances and voltages across the elements, the current through
the elements is given by

Ip[ - prpl .\"pl.rs ‘,pl
N - = (29)
ry ) rs.pl -\rs,rs ‘rs
| —
e 0 -
Partial
Network P
Vp]
| €
i
ZBUS
Li=1pu
|
0 Ref.

Fig.3 Calculation for Z;



Power System -Il1

R20A0209

where i, is current through element p-q

i . is vector of currents through elements of the partial network

v, 18 voltage across element p-g

Y i 18 self —admittance of the added element

¥ i is the vector of mutual admittances between the added elements p-g and

elements r-s of the partial network.

v _is vector of voltage across elements of partial network.

Vys.p 18 transpose of y,, . .

¥,. . is the primitive admittance of partial network.

Since the current in the added branch p-1. is zero. i, = 0. We thus have from (29),

lp[ = ypl.plvpl g7 ypl.rsvrs =0

ypl.rs vrs

Solving, v,, =— or

Ypi.pt
_ ypl.rs (F:r = Es)

ypI.pI

However,

ypl.rs "pq.r:

And

Yor.pt = Ypa.pq

Using (27), (31) and (32) in (28), we get

+ S;pq.rs (Zri ik Zs:)
y

Y pa.pq

By i

pi gi

(30)

=12 i Al (33)
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To find Z;:

The element Z; can be computed by injecting a current of Ipu at bus-1, I; = 1.0 pu. As
before, we have the relations as under:

Evz=Zyhi=Zy LA sl R N I N S (34)
Hence, ei=Ei=Zy; Ey=7Z, ;

Also, e=E;-Eq-vp:

So that Zy =Zy- Zgi- Vp V i=1,2,...i....D,...Q,....m, # (35)

Since now the current in the added element is i,=—1,=-10,we have from (29)

lpl }plpl +\plls rs:—l
: Yrs%
Solving, v, =—1+~~"=
ypl.pl
.« I, (E E ) ~
TN (R (36)
Y i pi
However,
ypl.rs y pg.rs
And Yoo = Vs (37)

Using (34), (36) and (37) in (35), we get

14 (F .
Z” — Zp1 _qu di - pq.rs( rl sI) (38)

Ypa.pq

Special Cases Contd....

The following special cases of analysis concerning Zgys building can be considered

with respect to the addition of link to a p-network.

Case (c): If there is no mutual coupling, then elements of y  are zero. Further, if p
is the reference node, then E,=0. thus,

ZII = _qu + <pq.pa (39)
From (39), it is thus observed that, when a link is added to a ref. bus, then the situation is

similar to adding a branch to a fictitious bus and hence the following steps are followed:
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1. The element is added similar to addition of a branch (case-b) to obtain the new matrix
of order m+1.
2. The extra fictitious node, | is eliminated using the node elimination algorithm.

Case (d): If there is no mutual coupling, then elements of pq rsy , are zero. Further, if p is
not the reference node, then

Zli - Zpi = Zqi

In=Zp—Zqg— Zpqpq
= Zpp+ ZLgq— 2 Zpq+ Zpgpq (40)

MODIFICATION OF ZBUS FOR NETWORK CHANGES

An element which is not coupled to any other element can be removed easily. The Zbus is
modified as explained in sections above, by adding in parallel with the element (to be
removed), a link whose impedance is equal to the negative of the impedance of the element
to be removed. Similarly, the impedance value of an element which is not coupledto any
other element can be changed easily. The Zbus is modified again as explained in sections
above, by adding in parallel with the element (whose impedance is to be changed), a link
element of impedance value chosen such that the parallel equivalent impedance is equal to
the desired value of impedance. When mutually coupled elements are removed, the Zbus is
modified by introducing appropriate changes in the bus currents of the original network to
reflect the changes introduced due to the removal of theelements.

Examples on ZBUS building

Example 1: For the positive sequence network data shown in table below, obtain ZBUS
by building procedure.

. Pos. seq.
SL. No. e reactance
(nodes) s
in pu
1 0-1 0.25
2 0-3 0.20
3 1-2 0.08
4 2-3 0.06

Solution:
The given network is as shown below with the data marked on it. Assume the elements to
be added as per the given sequence: 0-1, 0-3, 1-2, and 2-3.
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@ 0.06 @
4

0.20 0.08

O s @

Fig. E1: Example System
Consider building ZBUS as per the various stages of building through the consideration of

the corresponding partial networks as under:
Step-1: Add element-1 of impedance 0.25 pu from the external node-1 (gq=1) to internal

ref. node-0 (p=0). (Case-a), as shown in the partial network;

)
i~

P-network

Zaus =[] .25

© O

1
Zu[;\m: 1{0.25

Step-2: Add element—2 of impedance 0.2 pu from the external node-3 (q=3) to internal ref.
node-0 (p=0). (Case-a), as shown in the partial network;
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P-network @

R}

ZBUS(I) @ 0.2 @

(2)
Zpus ~ =

1| 0.25

0

0.2

Step-3: Add element-3 of impedance 0.08 pu from the external node-2 (q=2) to internal node-

1 (p=1). (Case-b), as shown in the partial network;

@)

P-networlt (.08
2 e ——
Z pus™ @
1 3 2
110251 0 1025
Zous™'= 3[ 0 [02] 0
2| 0:25 | O |033

Step-4: Add element—4 of impedance 0.06 pu between the two internal nodes, node-2
(p=2) to node-3 (q=3). (Case-d), as shown in the partial network;
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o
©

E

P-network

Z gus® l
1 3 2 1
1 |10.25 0 0.25 |1 0.25
Zu['\“-h = 3 0 0.2 0 -0.2
21 0.25 0 0.33 | 0.33
11025 |(-0.2(0.33]|0.59

The fictitious node | is eliminated further to arrive at the final impedance matrix as under:

1 3 2

0.1441 1 0.0847 ] 0.1100
0.0847 | 0.1322 [ 0.1120
0.1100 | 0.1120 | 0.1454

Znu (final) _
LBUS =

[ LP¥] —

= |

Lpus =

===~

= | = k| =
[l Wl | OS] e e B LY
(SN T ] T S L

n [l = LF¥] (o) —

(o]
o |2
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@ 1.0 pu @
Zos® | SN
p- Network @

19)

@:

R:f.
Z 5us® 8 1.0 pu @
p- Network _®

©

Z.B.IIsm

o |
p- Network @
(©

2.0 pu @
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2.0 pu

‘ 2.0 pu

2.0 pu

@ ®

& 1.0 pu
\

2.0 pu
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Solution: The specified system is considered with the reference node denoted by node-O0.
By its inspection, we can obtain the bus impedance matrix by building procedure by
following the steps through the p-networks as under:

Stepl: Add branch 1 between node 1 and reference node. (q=1, p=0)

Zpus = ]
p_netwo 1k o @

1
Zbus(l) = I[JO l]

Step2: Add branch 2, between node 2 and reference node. (g =2, p =0).

s(l]' @

Zyu

p-network @
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1 2

ifjo1 o
Z.ﬁ‘wz .
2l 0 jo.15

Step3: Add branch 3, between node 1 and node 3 (p=1,q=13)

D @
p-network

()

1 2 3
101 0 joi|
Z,. =2 0 j015 O

3[j01 0 jO5)

Step 4: Add element 4, which is a link between node 1 and node 2. (p=1,q9=2)

LE3)

D

p-network

91809
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1 2
11701 o
sl o 0.15
zZ,. =| J
3| jo.1 o
i o1 - 015

3 !
Jjo1 o1

0 - 015
Fos5 o
FO.1  jO.85

Now the extra node-I has to be eliminated to obtain the new matrix of step-4, using the

algorithmic relation:

N = N N Vo ¥,

1

70.08823
F0.01765
70.08823

L s =

Vij=1.2 3.

2 3

j0.01765 j0.08823
j0.12353 j0.01765
j0.01765 j0.48823

Step 5: Add link between node 2 and node 3 (p = 2, q=3)

1)

Zryous

Pp-network

JERR
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Z, = Z, - Zy = jO.01765— j0.08823 = - j0.07058
Z,=Z, -2, = j012353— j0.01765 = j0.10588

Zp=Zp-Zy = j0.01765— j048823 = — j0.47058
Zp=Zy—Zy+tZyy

= j0.10588 — - jO.47058 1+ jO.4 = jO.97646

Thus, the new matrix is as under:

1 2 3 1

1[ j0.08823 j0.01765 j0.08823 - j0.07058]
2| jO01765 0.12353 j0.01765  j0.10588
3| 008823 001765 [0.48823 - jO.47058
[|-j0.07058 ;010588 - j0.47058 j0.97646 |

Node [ is eliminated as shown in the previous step:

1 2 3

11 j0.08313 ;0.02530 ;F0.05421
2y, =2 j0.02530 ;011205 ;0.06868
3| jO.05421 ;0.06868 ;0.26145

Further, the bus admittance matrix can be obtained by inverting the bus impedance
matrix as under:

! 2 3
1[- 141667 jl6667  j2.5

Y, =[Z,,["=2| jles67 - 108334 25
3L J25 j25 - j50

As a check, it can be observed that the bus admittance matrix, Ygus can also be
obtained by the rule of inspection to arrive at the same answer.

32



UNIT I
FAULT ANALYSIS

INTRODUCTION
A fault is any abnormal condition in a power system. The steady state operating mode of a

power system is balanced 3-phase a.c. .However, due to sudden external or internal changes

in the system, this condition is disrupted.

When the insulation of the system fails at one or more points or a conducting object

comes into contact with a live point, a short circuit or a fault occurs.

CAUSES OF POWER SYSTEM FAULTS
The causes of faults are numerous, e.g.

o Lightning

o Heavy winds

o Trees falling across lines

. Vehicles colliding with towers or poles
. Birds shorting lines

. Aircraft colliding with lines

. Vandalism

. Small animals entering switchgear

. Line breaks due to excessive loading

COMMON POWER SYSTEM FAULTS
Power system faults may be categorised as one of four types; in order of frequency of

occurrence, they are:

Single line to ground fault

Line to line fault

Double line to ground fault

Balanced three phase fault



The first three types constitutes severe unbalanced operating conditions which involves only one
or two phases hence referred to as unsymmetrical faults. In the fourth type, a faultinvolving all

the three phases occurs therefore referred to as symmetrical (balanced) fault.

1.04 EFFECTS OF POWER SYSTEM FAULTS

Faults may lead to fire breakout that consequently results into loss of property, loss of life and
destruction of a power system network. Faults also leads to cut of supply in areas beyond the fault
point in a transmission and distribution network leading to power blackouts; this interferes with
industrial and commercial activities that supports economic growth, stalls learning activities in

institutions, work in offices, domestic applications and creates insecurity at night.
All the above results into retarded development due to low gross domestic product realised.

It is important therefore to determine the values of system voltages and currents during faulted
conditions, so that protective devices may be set to detect and minimize the harmful effects of

such contingencies

THEVENIN’S EQUIVALENT CIRCUIT

Thevenin’s theorem states that any linear network containing any number of voltage sources and

impedances can be replaced by a single emf and an impedance.

The emf is the open circuit voltage as seen from the terminals under consideration and the

impedance is the network impedance as seen from these terminals.
This circuit consisting of a single emf and impedance is known as Thevenin’s equivalent circuit.

The calculation of fault current can then be very easily done by applying this theorem after

obtaining the open circuit emf and network impedance as seen from the fault point.



SYMMETRICAL COMPONENTS
The majority of faults in power systems are asymmetrical. To analyse an asymmetrical fault,

an unbalanced 3- phase circuit has to be solved. Since the direct solution of such a circuit is very
difficult, the solution can be more easily obtained by using symmetrical components since this

yields three (fictitious) single phase networks, only one of which contains a driving emf.

Since the system reactances are balanced the thee fictitious networks have no mutual coupling

between them, a fact that is making this method of analysis quite simple.

1.21 General principles
Any set of unbalanced 3-phase voltages (or current) can be transformed into 3 balanced sets.

These are:

1. A positive sequence set of three symmetrical voltages (i.e. all numerically equal and
all displaced from each other by 120% having the same phase sequence abc as the original set

and denoted by Va1, Vb1 Ve as shown in the fig(1a)

Vb1

Fig. (a)



A negative sequence set of three symmetrical voltages having the phase sequence

opposite to that of the original set and denoted by Va, Vi, V2 as shown in fig(1b)

Va2

VCZ

Fig. 1 (b)



3. A zero sequence set of three voltages, all equal in magnitude and in phase with each other

and denoted by Vao, Vo, Veo as shown in fig (1c) below:

VaO
Vo

Fig. 1 (c)

The positive, negative and zero sequence sets above are known as symmetrical components.
Thus we have,

Va= Va1 +Va2 +Vao

Vb= Vb1 +Vi2 +Vio

V=V + Ve +Veo

The symmetrical components application to power system analysis is of fundamental importance
since it can be used to transform arbitrarily unbalanced condition into symmetrical components,
compute the system response by straightforward circuit analysis on simple circuit models and
transform the results back to the original phase variables.

Generally the subscripts 1, 2 and 0 are used to indicate positive sequence, negative sequence and

zero sequence respectively.

The symmetrical components do not have separate existence; they are just mathematical

components of unbalanced currents (or voltages) which actually flow in the system.



1.2.2 The “a” operator

The operator “a” as used in symmetrical components is one in which when multiplied to a vector,
rotates the vector through 120° in a positive (anticlockwise) direction without changing the

magnitude.

The operator “a” is defined as 1 120°

THREE-SEQUENCE IMPEDANCES AND SEQUENCE NETWORKS
Positive sequence currents give rise to only positive sequence voltages, the negative sequence

currents give rise to only negative sequence voltages and zero sequence currents give rise to only
zero sequence voltages, hence each network can be regarded as flowing within in its own network

through impedances of its own sequence only.

In any part of the circuit, the voltage drop caused by current of a certain sequence depends on the

impedance of that part of the circuit to current of that sequence.

The impedance of any section of a balanced network to current of one sequence may be different

from impedance to current of another sequence.
The impedance of a circuit when positive sequence currents are flowing is called impedance,

When only negative sequence currents are flowing the impedance is termed as negative sequence

impedance.
With only zero sequence currents flowing the impedance is termed as zero sequence impedance.

The analysis of unsymmetrical faults in power systems is carried out by finding the symmetrical
components of the unbalanced currents. Since each sequence current causes a voltage drop of that
sequence only, each sequence current can be considered to flow in an independent network

composed of impedances to current of that sequence only.

The single phase equivalent circuit composed of the impedances to current of any onesequence

only is called the sequence network of that particular sequence.



The sequence networks contain the generated emfs and impedances of like sequence.

Therefore for every power system we can form three- sequence network s. These sequence
networks, carrying current l.;, la, and I, are then inter-connected to represent the different fault

conditions.

PHYSICAL SIGNIFICANCE OF SEQUENCE COMPONENTS
This is achieved by considering the fields which results when these sequence voltages are applied

to the stator of a 3-phase machine e.g. an induction motor.

If a positive sequence set of voltages is applied to the terminals a, b, ¢ of the machine, a magnetic
field revolving in a certain direction will be set up. If now the voltages to the terminals band ¢
are changed by interchanging the leads to terminals b and c, it is known from induction motor

theory that the direction of magnetic field would be reversed.

It is noted that for this condition, the relative phase positions of the voltages applied to the motor

are the same as for the negative sequence set.

Hence, a negative sequence set of voltages produces a rotating field rotating in an opposite

direction to that of positive sequence.

For both positive and negative sequence components, the standard convention of counter

clockwise rotation is followed.

The application of zero sequence voltages does not produce any field because these voltages are
in phase and the three -phase windings are displaced by 120°The positive and the negative
sequence set are the balanced one. Thus, if only positive and negative sequence currents are
flowing, the phasor sum of each will be zero and there will be no residual current. However, the
zero sequence components of currents in the three phases are in phase and the residual current
will be three times the zero sequence current of one phase. Inthe case of a fault involving ground,
the positive and negative sequence currents are in equilibrium while the zero sequence currents

flow through the ground and overhead ground wires.



SEQUENCE NETWORKS OF SYNCHRONOUS MACHINES
An unloaded synchronous machine having its neutral earthed through impedance, z, is shown

in fig. 2(a) below.

A fault at its terminals causes currents I, |, and I.to flow in the lines. If fault involves earth, a
current 1, flows into the neutral from the earth. This current flows through the neutral impedance
Zn.

Thus depending on the type of fault, one or more of the line currents may be zero.

|a1

le1

Fig.2 (a)



Positive sequence network
The generated voltages of a synchronous machine are of positive sequence only since the windings

of a synchronous machine are symmetrical.

The positive sequence network consists of an emf equal to no load terminal voltages and is in
series with the positive sequence impedance Z; of the machine. Fig.2 (b) and fig.2(c) shows the
paths for positive sequence currents and positive sequence network respectively on a single
phase basis in the synchronous machine. The neutral impedance Z, does not appear in the circuit
because the phasor sum of I, Ips and Il is zero and no positive sequence current can flow

through Z,. Since its a balanced circuit, the positive sequence N
The reference bus for the positive sequence network is the neutral of the generator.

The positive sequence impedance Z; consists of winding resistance and direct axis reactance. The
reactance is the sub-transient reactance X4 or transient reactance X’q or synchronous reactance

Xq depending on whether sub-transient, transient or steady state conditions are being studied.

From fig.2 (b) , the positive sequence voltage of terminal a with respect to the reference bus is
given by:

Vai= Ea- Z1la1 la1

. §
4

Fig.2 (b)



Reference bus

Ea

Z

Fig.2(c)

2.02 Negative sequence network
A synchronous machine does not generate any negative sequence voltage. The flow of

negative sequence currents in the stator windings creates an mmf which rotates at synchronous
speed in a direction opposite to the direction of rotor, i.e., at twice the synchronous speed with

respect to rotor.

Thus the negative sequence mmf alternates past the direct and quadrature axis and sets up a
varying armature reaction effect. Thus, the negative sequence reactance is taken as the average

of direct axis and quadrature axis sub-transient reactance, i.e.,
X2=05(X"4+X7).

It not necessary to consider any time variation of X, during transient conditions because there
is no normal constant armature reaction to be effected. For more accurate calculations, the
negative sequence resistance should be considered to account for power dissipated in the rotor

poles or damper winding by double supply frequency induced currents.

The fig.2 (d) and fig.2 (e) shows the negative sequence currents paths and the negativesequence

network respectively on a single phase basis of a synchronous machine.

The reference bus for the negative sequence network is the neutral of the machine. Thus, the

negative sequence voltage of terminal a with respect to the reference bus is given by:

Va2=-Z2la2



|a2

Fig.2 (d)

Reference bus

Z,

Fig.2 (e)



2.0.3 Zero sequence network
No zero sequence voltage is induced in a synchronous machine. The flow of zero sequence

currents in the stator windings produces three mmf which are in time phase. If each phase winding
produced a sinusoidal space mmf, then with the rotor removed, the flux at a point on the axis of

the stator due to zero sequence current would be zero at every instant.

When the flux in the air gap or the leakage flux around slots or end connections is considered, no

point in these regions is equidistant from all the three —phase windings of the stator.

The mmf produced by a phase winding departs from a sine wave, by amounts which depend upon

the arrangement of the winding.

The zero sequence currents flow through the neutral impedance Z, and the current flowing through
this impedance is 3l40.

Fig.2(f) and fig.2(g) shows the zero sequence current paths and zero sequence network

respectively, and as can be seen, the zero sequence voltage drop from point a to ground is - 3la0Zs

—la0Zgo Where Zy is the zero sequence impedance per phase of the generator.

Since the current in the zero sequence network is I this network must have an impedance of 32,
+Zg0. Thus,
Zo =3Zn +Zgo

The zero sequence voltage of terminal a with respect to the reference bus is thus:

Vao = -1a0Zo
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Fig.2 (g)



SEQUENCE IMPEDANCES OF TRANSMISSION LINE
The positive and negative sequence impedances of linear symmetrical static circuits do not depend

on the phase sequence and are, therefore equal. When only zero sequence currents flow in the
lines, the currents in all the phases are identical. These currents return partly through the ground

and partly through overhead ground wires.

The magnetic field due to the flow of zero sequence currents through line, ground and round wires
is very different from the magnetic field due to positive sequence currents. The zero sequence

reactance of lines is about 2 to 4 times the positive sequence reactance.

SEQUENCE IMPEDANCES OF TRANSFORMERS
A power system network has a number of transformers for stepping up and stepping down the

voltage levels.

A transformer for a 3-phase circuit may consist of three single phase transformers with windings

suitably connected in star or delta or it may be a 3-phase unit.

Modern transformers are invariably three-phase units because of their lower cost, lesser space
requirements and higher efficiency. The positive sequence impedance of a transformer equals its
leakage impedance. The resistance of the windings is usually small as compared to leakage

reactance.

For transformers above 1 MVA rating, the reactance and impedance are almost equal. Since the
transformer is a static device, the negative sequence impedance is equal to the positive sequence

impedance.

The zero sequence impedance of 3-phase units is slightly different from positive sequence
impedance. However the difference is very slight and the zero sequence impedance is also

assumed to be the same as the positive sequence impedance.

The flow of zero sequence currents through a transformer and hence in the system depends greatly

on the winding connections. The zero sequence currents can flow through the winding



connected in star only if the star point is grounded. If the star point isolated zero sequence currents

cannot flow in the winding.

The zero sequence currents cannot flow in the lines connected to a delta connected winding
because no return path is available for these zero sequence currents. However, the zero sequence
currents caused by the presence of zero sequence voltages can circulate through the delta

connected windings.

FORMATION OF SEQUENCE NETWORKS
A power system network consists of synchronous machines, transmission lines and transformers.

The positive sequence network is the same as the single line reactance diagram used for the
calculation of symmetrical fault current. The reference bus for positive sequence network is the

system neutral.

The negative sequence network is similar to the positive sequence network except that the negative
sequence network does not contain any voltage source. The negative sequence impedances for
transmission line and transformers are the same as the positive sequence impedances. But the
negative sequence impedance of a synchronous machine may be different from its positive

sequence impedance.

Any impedance connected between a neutral and ground is not included in the positive and
negative sequence networks because the positive and the negative sequence currents cannot flow

through such impedance.

The zero sequence network also does not contain any voltage source. Any impedance included

between neutral and ground becomes three times its value in a zero sequencenetwork.
The following are the summary of the rules for the formation of sequence networks:-

e The positive sequence network is the same as single line impedance or reactancediagram

used in symmetrical fault analysis. The reference bus for this network is the system neutral.



e The generators in power system produce balanced voltages. Therefore only positive
sequence network has voltage source. There are no voltage sources in negative and zero
sequence networks.

e The positive sequence current can cause only positive sequence voltage drop. Similarly
negative sequence current can cause only negative sequence voltage drop and zero
sequence current can cause only zero sequence voltage drop.

e The reference for negative sequence network is the system neutral. However, the reference
for zero sequence network is the ground. Zero sequence current can flow only if the
neutral is grounded.

e The neutral grounding impedance Z, appears as 3Z, in the zero sequence network.

o The three sequence networks are independent and are interconnected suitably depending
on the type of fault.

UNSYMMETRICAL FAULTS
The basic approach to the analysis of unsymmetrical faults is to consider the general situation

shown in the fig.3.0 which shows the three lines of the three- phase power system at the point of
fault.

The general terminals brought out are for purposes of external connections which simulate the
fault. Appropriate connections of the three stubs represent the different faults, e.g., connecting
stub “a’to ground produces a single line to ground fault, through zero impedance, on phase

‘a’. The currents in stubs b and c are then zero and la is the fault current.

Similarly, the connection of stubs b and ¢ produces a line to line fault, through zero impedance,

between phases b and c, the current in stub a is then zero and I, is equal to Ic.The positive

assignment of phase quantities is important. It is seen that the currents flow out of the system.

The three general sequence circuits are shown in fig.3.1 (a). The ports indicated correspond to the
general 3- phase entry port of fig.3.1. A suitable inter- connection of the three- sequence networks
depending on the type fault yields the solution to the problem.



The sequence networks of fig.3.1 (a) can be replaced by equivalent sequence networks of fig.3.1

(b) . Zo, Z; and Z; indicate the sequence impedances of the network looking into the fault

Fig.3.0 General 3- phase access port



Equivalent sequence networks

General sequence networks

Zo la0
Zero lao 2N O +
sequence ——0
network Vo Vac
o O
la1 Z; la1
Positive —>——O0 — o © ¢
sequence +
network Var - Va
——0
O
Negative a2 z -
J ——o0 . o © ¢
sequence
network Vao y
o . Oa2
Fig3.1 (a) Fig:3.1(b)

SINGLE LINE TO GROUND FAULT
The termination of the three- phase access port as shown in fig. 3.2 brings about a condition

of single line to ground fault through a fault impedance Z; .



Typically Z; issetto zeroinall fault studies. | include Z: inthe analysis for the sake of

generality. The terminal conditions at the fault point give the following equations:

|b=0
=0
Va:IaZf

a
b
C
| w + ll lc
a Z $
ped
Va + 4V, A+V,
| n_| |
Fig. 3.2

Connections of sequence networks for a single line to ground fault and its simplified

equivalent circuit are shown in the fig. 3.3(a) and fig. 3.3 (b) below:
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Fig.3.3 (a)

Equivalent sequence networks
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Fig.3.3 (b)



LINE TO LINE FAULT

The termination of the three- phase access port as in the fig.3.4 below simulates a line to line
fault through a fault impedance Z; .

|
L | Jbl%_ IC{J
wi? b

v, v,
n_| | |

Fig. 3.4

The terminal conditions at the fault point give the following equations,

1.=0
Ibz‘lc
Vp=Vc+ Zslp

lb=-lc=1lp + azlal +ala

Connection of sequence networks for a line to line fault and its simplified equivalent circuit
are shown in the fig.3.5 (a) and fig.(b) below.



General sequence networks
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Equivalent sequence networks
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Fig. 3.5 (a)

DOUBLE LINE TO GROUND FAULT

|a1

+
Val

Z

Fig.3.5 (b)

The termination of the three- phase access port as shown in fig.3.6 simulates a double line to

ground fault through fault impedance Z;.

The terminal conditions at the fault point give the following equations,




la=0

Vo=Ve=(l+Ic)Z

iy |} |

T Zf

fv

c

Fig. 3.6

The sequence networks and the equivalent circuit are shown by the Fig.3.7 (a) and Fig. 3.7 (b)
below
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BALANCED THREE PHASE FAULT

This type of fault occurs infrequently, as for example, when a line, which has been made safe for
maintenance by clamping all the three phases to earth, is accidentally made alive or when, due to slow
fault clearance, an earth fault spreads across to the other two phases or when a mechanical excavator
cuts quickly through a whole cable.

It is an important type of fault in that it results in an easy calculation and generally, a pessimistic
answer.

The circuit breaker rated MVA breaking capacity is based on 3- phase fault MVA. Since circuit
breakers are manufactured in preferred standard sizes e.g. 250, 500, 750 MVA high precision is not
necessary when calculating the 3- phase fault level at a point ina power system.

The system impedances are also never known accurately in three phase faults.
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UNIT-IV

LOAD FLOW STUDIES-1

REVIEW OF NUMERICAL SOLUTION OF EQUATIONS

The numerical analysis involving the solution of algebraic simultaneous equations forms the
basis for solution of the performance equations in computer aided electrical power system
analyses, such as during linear graph analysis, load flow analysis (nonlinear equations),
transient stability studies (differential equations), etc. Hence, it is necessary to review the
general forms of the various solution methods with respect to all forms of equations, as
under:

1. Solution Linear equations:

* Direct methods:

- Cramer"'s (Determinant) Method,

- Gauss Elimination Method (only for smaller systems),
- LU Factorization (more preferred method), etc.

* Iterative methods:
- Gauss Method
- Gauss-Siedel Method (for diagonally dominant systems)

3. Solution of Nonlinear equations:
Iterative methods only:
- Gauss-Siedel Method (for smaller systems)
- Newton-Raphson Method (if corrections for variables are small)

4. Solution of differential equations:
Iterative methods only:
- Euler and Modified Euler method,
- RK 1V-order method,
- Milne*s predictor-corrector method, etc.

It is to be observed that the nonlinear and differential equations can be solved only by the
iterative methods. The iterative methods are characterized by the various performance
features as under:

_ Selection of initial solution/ estimates

_ Determination of fresh/ new estimates during each iteration

_ Selection of number of iterations as per tolerance limit

_ Time per iteration and total time of solution as per the solution method selected

_ Convergence and divergence criteria of the iterative solution

_ Choice of the Acceleration factor of convergence, etc.
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A comparison of the above solution methods is as under:

In general, the direct methods yield exact or accurate solutions. However, they are suited for
only the smaller systems, since otherwise, in large systems, the possible round-off errors
make the solution process inaccurate. The iterative methods are more useful when the
diagonal elements of the coefficient matrix are large in comparison with the offdiagonal
elements. The round-off errors in these methods are corrected at the successive steps of the
iterative process.The Newton-Raphson method is very much useful for solution of non —
linear equations, if all the values of the corrections for the unknowns are very small in
magnitude and the initial values of unknowns are selected to be reasonably closer to the
exact solution.

LOAD FLOW STUDIES

Introduction: Load flow studies are important in planning and designing future expansion
of power systems. The study gives steady state solutions of the voltages at all the buses,
for a particular load condition. Different steady state solutions can be obtained, for different
operating conditions, to help in planning, design and operation of the power system.
Generally, load flow studies are limited to the transmission system, which involves bulk
power transmission. The load at the buses is assumed to be known. Load flow studies throw
light on some of the important aspects of the system operation, such as: violation of voltage
magnitudes at the buses, overloading of lines, overloading of generators, stability margin
reduction, indicated by power angle differences between buseslinked by a line, effect of
contingencies like line voltages, emergency shutdown of generators, etc. Load flow studies
are required for deciding the economic operation of the power system. They are also required
in transient stability studies. Hence, load flow studies play a vital role in power system
studies. Thus the load flow problem consists of finding the power flows (real and reactive)
and voltages of a network for given bus conditions. At each bus, there are four quantities of
interest to be known for further analysis: the real and reactive power, the voltage magnitude
and its phase angle. Because of the nonlinearity of the algebraic equations, describing the
given power system, their solutions are obviously, based on the iterative methods only. The
constraints placed on the load flow solutions could be:

_ The Kirchhoff“s relations holding good,

_ Capability limits of reactive power sources,

_ Tap-setting range of tap-changing transformers,

_ Specified power interchange between interconnected systems,

_ Selection of initial values, acceleration factor, convergence limit, etc.

Classification of buses for LFA: Different types of buses are present based on the
specified and unspecified variables at a given bus as presented in the table below:
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Table 1. Classification of buses for LFA

SL Specified | Unspecified
Bus Types ,p . ' P Remarks
No. Variables variables
1 | Slack/ V. & Pe. Q |V, &: are assumed if not
Swing Bus specified as 1.0 and 0°
Generator/ A generator is present at the
2 | yrchigerpvBas | oIV 06,8 | ommsb
Machine/ PV Bus machine bus
About 80% buses are of P
3 | Load/ PQ Bus Ps. Qg V|, & e o Q
Voltage ‘a’ is the % tap change in
4 i a : .
Controlled Bus Pg.Qc. [V 0, a tap-changing transformer

Importance of swing bus: The slack or swing bus is usually a PV-bus with the largest
capacity generator of the given system connected to it. The generator at the swing bus
supplies the power difference between the “specified power into the system at the other
buses” and the “total system output plus losses”. Thus swing bus is needed to supply the
additional real and reactive power to meet the losses. Both the magnitude and phase angle
of voltage are specified at the swing bus, or otherwise, they are assumed to be equal to 1.0
p.u. and 00, as per flat-start procedure of iterative

solutions. The real and reactive powers at the swing bus are found by the computer routine
as part of the load flow solution process. It is to be noted that the source at the swing bus is
a perfect one, called the swing machine, or slack machine. It is voltage regulated, i.e., the
magnitude of voltage fixed. The phase angle is the system reference phase and hence is
fixed. The generator at the swing bus has a torque angle and excitation which vary or swing
as the demand changes. This variation is such as to produce fixed voltage.

Importance of YBUS based LFA:

The majority of load flow programs employ methods using the bus admittance matrix, as
this method is found to be more economical. The bus admittance matrix plays a very
important role in load flow analysis. It isa complex, square and symmetric matrix and hence
only n(n+1)/2 elements of YBUS need to be stored for a n-bus system. Further, in the YBUS
matrix, Yij =0, ifan incident element is not present in the system connectingthe buses ,,i*
and ,,j“. since in a large power system, each bus is connected only to a fewer buses through
an incident element, (about 6-8), the coefficient matrix, YBUS of such systems would be
highly sparse, i.e., it will have many zero valued elements in it. This is defined by the sparsity
of the matrix, as under:

. 2 Total no. of zero valued elements of Ygus
Percentage sparsity of a

. g -
given matrix of n= order:

Total no. of entries of Ygus

S (Z/ n*) x 100 %

The percentage sparsity of Ysus, in practice, could be as high as 80-90%, especially
for very large, practical power systems. This sparsity feature of YBUS is extensively used
in reducing the load flow calculations and in minimizing the memory required to store the

(1)
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coefficient matrices. This is due to the fact that only the non-zero elements YBUS can be
stored during the computer based implementation of the schemes, by adopting the suitable
optimal storage schemes. While YBUS is thus highly sparse, it"s inverse, ZBUS, the bus
impedance matrix is not so. It is a FULL matrix, unless the optimal bus ordering schemes
are followed before proceeding for load flow analysis.

THE LOAD FLOW PROBLEM

Here, the analysis is restricted to a balanced three-phase power system, so that the analysis
can be carried out on a single phase basis. The per unit quantities are used for allquantities.
The first step in the analysis is the formulation of suitable equations for the power flows in
the system. The power system is a large interconnected system, where various buses are
connected by transmission lines. At any bus, complex power is injected into the bus by the
generators and complex power is drawn by the loads. Of course at any bus, either one of
them may not be present. The power is transported from one bus to othervia the transmission
lines. At any bus i, the complex power Si (injected), shown in figure 1, is defined as

Si = Sgi — Spi (2)

PitjQs PeitiQcs

Bus-1 |

System in
bus Frame
of Reference

Ref. Bus

Fig.1 power flows at a bus-i

where Si = net complex power injected into bus i, SGi = complex power injected by the
generator at bus i, and SDi = complex power drawn by the load at bus i. According to
conservation of complex power, at any bus i, the complex power injected into the bus must
be equal to the sum of complex power flows out of the bus via the transmission lines. Hence,

Si= Sij"i=1,2 e n
(3)

where Sij is the sum over all lines connected to the bus and n is the number of buses in the
system (excluding the ground). The bus current injected at the bus-i is defined as

li=1Gi— IDI"i=1,2, coor.. n (4)
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where 1Gi is the current injected by the generator at the bus and IDi is the current drawn
by the load (demand) at that bus. In the bus frame of reference

IBUS = YBUS VBUS
()

where

Igus=| . is the vector of currents injected at the buses,

1

n

Ygus is the bus admittance matrix, and

vl
v2
Veus =1 . is the vector of complex bus voltages.

v

n

Equation (5) can be considered as
L:Zgw ¥ i= 12w n (6)
m

The complex power S; is given by
Si = Vi I:

%

= Vi [iya Vj]
j=1

:VJZﬁW] (7)

Let VAV, |£ 6, =|v,](cos &, + jsin &)

%:@_@
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Ly =0k s
Hence from (7). we get,
Si= i 4 |Vj‘ (cos J; + jsin 5,.1.) (G,.]. - jBU) (8)
j=1

Separating real and imaginary parts in (8) we obtain,

n

P;= Z \/i| le (G,.j cosJd; + By sin 5,,) 9)
i=1

Q= i M [VJ.| (G,.j sin ()U - B, cos&ij) (10)
j=1

An alternate form of P; and Q; can be obtained by representing Yjx also in polar form

as Y= 48, (11)

Y

Again, we get from (7),

AP

Si= \\/,.\45,2"‘1 V,|£-6 (12)
=

The real part of (12) gives P;.

P= 3 V| cost-0, + 6, - 5)
=1
= v, i |Y,,| V,|cos— (6, — 9, + 9,) or
j=1
P :Z V. |VJHYU cos(; — 0, +§j) Wi, e riaad n, (13)

j=1

Similarly, Q; is imaginary part of (12) and is given by

0. =|v| iIYlevjl sin— (6, — J,+9,) or
j=1

T Vi V)| [%| sin@; - 8, +6,)  Vi=1.2.......n (14)
i=1

Equations (9)-(10) and (13)-(14) are the ,,power flow equations™ or the ,load flow
equations™ in two alternative forms, corresponding to the n-bus system, where each bus-i is
characterized by four variables, Pi, Qi, |Vi|, and di. Thus a total of 4n variables are
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involved in these equations. The load flow equations can be solved for any 2n unknowns,
if the other 2n variables are specified. This establishes the need for classification of buses of
the system for load flow analysis into: PV bus, PQ bus, etc.

DATA FOR LOAD FLOW

Irrespective of the method used for the solution, the data required is common for any load
flow. All data is normally in pu. The bus admittance matrix is formulated from these data.
The various data required are as under:

System data: It includes: number of buses-n, number of PV buses, number of loads, number
of transmission lines, number of transformers, number of shunt elements, the slack bus
number, voltage magnitude of slack bus (angle is generally taken as 00), tolerance limit,
base MVA, and maximum permissible number of iterations.

Generator bus data: For every PV bus i, the data required includes the bus number, active
power generation PGi, the specified voltage magnitude i sp V, , minimum reactive power
limit Qi,min, and maximum reactive power limit Qi,max.

Load data: For all loads the data required includes the the bus number, active power demand
PDi, and the reactive power demand QDi.

Transmission line data: For every transmission line connected between buses i and k the
data includes the starting bus number i, ending bus number Kk,.resistance of the line,
reactance of the line and the half line charging admittance.

Transformer data:

For every transformer connected between buses i and k the data to be given includes: the
starting bus number i, ending bus number k, resistance of the transformer, reactance of the
transformer, and the off nominal turns-ratio a.

Shunt element data: The data needed for the shunt element includes the bus number where
element is connected, and the shunt admittance (Gsh + j Bsh).

GAUSS - SEIDEL (GS) METHOD

The GS method is an iterative algorithm for solving non linear algebraic equations. An initial
solution vector is assumed, chosen from past experiences, statistical data or from practical
considerations. At every subsequent iteration, the solution is updated till convergence is
reached. The GS method applied to power flow problem is as discussed below.

Case (a): Systems with PQ buses only:

Initially assume all buses to be PQ type buses, except the slack bus. This means that (n—1)
complex bus voltages have to be determined. For ease of programming, the slack bus is
generally numbered as bus-1. PV buses are numbered in sequence and PQ buses are ordered
next in sequence. This makes programming easier, compared to random ordering of buses.
Consider the expression for the complex power at bus-i, given from (7), as:
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n R
|

si=vii Z,Yff v, |
= |

\
\

/
/

This can be written as

= % (& i =
S =V, ’ZYU Vj; (15)

\ j=1

Since S, =P;—jQ;, we get,

P-jO _ <
v &N

1

So that,

’A '

i i
I

Rearranging the terms, we get,

Vi Bi—- J0; _ > ¥ N, e R - n (17)
i V, j=t
JF1i

Equation (17) is an implicit equation since the unknown variable, appears on both sides of
the equation. Hence, it needs to be solved by an iterative technique. Starting from an initial
estimate of all bus voltages, in the RHS of (17) the most recent values of the bus voltages
is substituted. One iteration of the method involves computation of all the bus voltages. In
Gauss—Seidel method, the value of the updated voltages are used in the computation of
subsequent voltages in the same iteration, thus speeding up convergence. Iterations are
carried out till the magnitudes of all bus voltages do not change by more than the tolerance
value. Thus the algorithm for GS method is as under:

Algorithm for GS method

1. Prepare data for the given system as required.

2. Formulate the bus admittance matrix YBUS. This is generally done by the rule of
inspection.

3. Assume initial voltages for all buses, 2,3,...n. In practical power systems, the magnitude
of the bus voltages is close to 1.0 p.u. Hence, the complex bus voltages at all (n-1) buses
(except slack bus) are taken to be 1.0L0°. This is normally refered as the flat start solution.
4. Update the voltages. In any (k +1)st iteration, from (17) the voltages are given by
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-1
YL _‘T ZY D Zyv‘“ Vi=23...n (18)

il j=i+l

(k+1) __
R =

Here note that when computation is carried out for bus-i, updated values are already
available for buses 2,3....(i-1) in the current (k+1)st iteration. Hence these values are used.
For buses (i+1).....n, values from previous, kth iteration are used.

AVED| =y & —v B < e Vi=23...0 (19)

1

Where,e is the tolerance value. Generally it is customary to use a value of 0.0001 pu.
Compute slack bus power after voltages have converged using (15) [assuming bus 1 is slack
bus].

\
{ n \

2%V

\J=1

S;=P - jQi =V,

7. Compute all line flows.
8. The complex power loss in the line is given by Sik + Ski. The total loss in the system is
calculated by summing the loss over all the lines.

Case (b): Systems with PV buses also present:
At PV buses, the magnitude of voltage and not the reactive power is specified. Hence it is
needed to first make an estimate of Qi to be used in (18). From (15) we have
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e

Qi:—lm v 34, vj
J=1

J

Where Im stands for the imaginary part. Atany (k+1/)" iteration, at the PV bus-i,

i-1
Q%Y = _Im {(v,.‘“)“ DK v gy ZY v_‘“l (21)
: =1 J
The steps for i PV bus are as follows:

. Compute Q*"

fa—

using (21)

2. Calculate V; using (18) with Q;= Q™"
3. Since cified at the PV bus, the magnitude of V; obtained in step 2
has to be modified and set to the specified value |V, _|. Therefore,
(k=) __ (k+1)
ViD=, | £8, (22)

The voltage computation for PQ buses does not change.

Case (c): Systems with PV buses with reactive power generation limits specified:

In the previous algorithm if the Q limit at the voltage controlled bus is violated during any
iteration, i.e (k +1) i Q computed using (21) is either less than Qi, min or greater than Qi,max,
it means that the voltage cannot be maintained at the specified value due to lackof reactive
power support. This bus is then treated as a PQ bus in the (k+1)st iteration and the voltage
is calculated with the value of Qi set as follows:

If Qi < Qi.min If Qi > Qi.max
ThEl] Q| = Qi.mjn_ Then Qi = Qi.max.
(23)

If in the subsequent iteration, if Qi falls within the limits, then the bus can be switched back
to PV status.

Acceleration of convergence

It is found that in GS method of load flow, the number of iterations increase with increase
in the size of the system. The number of iterations required can be reduced if the correction
in voltage at each bus is accelerated, by multiplying with a constant o, called the
acceleration factor. In the (k+1)st iteration we can let

V.5 (accelerate d) =V* + a (V50 —v®) (24)
where a is a real number. When o =1, the value of (k +1) is the computed value. If 1<a

<2 then the value computed is extrapolated. Generally _ is taken between 1.2 to 1.6, for GS
load flow procedure. At PQ buses (pure load buses) if the voltage magnitude violates
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the limit, it simply means that the specified reactive power demand cannot be supplied,
with the voltage maintained within acceptable limits.

Examples on GS load flow analysis:

Example-1: Obtain the voltage at bus 2 for the simple system shown in Fig 2, using
the Gauss—Seidel method, if V; = 1 £ 0’ PU.

s _l_s_;1o
@1 JT@

S$p2=0.5+j1

Fig : System of Example 1
Solution:
Here the capacitor at bus 2, injects a reactive power of 1.0 pu. The complex power
injection at bus 2 is

S, =j1.0-(0.5+j1.0)=—0.5 pu.

V,=12£0°
[—j2 j2
YBUS:LJ.?- _2

Vztkm a3 _ .]Qg . Y:l Vljl

e
f't (%)

Since V is specified it is a constant through all the iterations. Let the initial voltage at

bus2, V) =1+j0.0=1£0"pu.
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—0.5

AR :
120"

Z ——j2

-(j2x1400)}

= 1.0-j0.25 = 1.030776 £- 14.036"

2 ' _0.5 2 0
V2=— ~—(j2x120°)
— j2 | 1.030776.£14.036

=0.94118—0.23529 =0.970145 £-14.036"

V= - _(j2x120°)
> T 2 10.970145.14.036°

=0.9375—j 0.249999 = 0.970261 £-14.931"

- 0.5 —
nToh [0.970261414.931" i2x120°)

=0.933612—j 0.248963 = 0.966237 £ -14.931"

. —05

=2 [0.966237414.9310

2

—(j?_xlAO")}

=0.933335—-j0.25 =0.966237 £—-14.995°

Since the difference in the voltage magnitudes is less than 10-6 pu, the iterations can be
stopped. To compute line flow
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r YW _ 1£0° — 0.966237 £ —14.995°
= jO.5

=0.517472 £-14.931°
S, =V,I,=1£0"%0.517472 £ 14.931°
=0.5+j0.133329 pu

_V, -V, 0966237 £—14.995" —1£0"
Zs j0.5

1‘21
=0.517472 £-194.93°
S, =V,1,,=—0.5+j0.0pu

The total loss in the line is given by S12 + S21 =j 0.133329 pu Obviously, it is observed
that there is no real power loss, since the line has no resistance.
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Example-2:
For the power system shown in fig. below, with the data as given in tables below, obtain
the bus voltages at the end of first iteration, by applying GS method.

.

2 £

(z Il\ v
6 0\

Power System of Example 2

Line data of example 2

R X B
(pw) | (pu) | 2
0.10 | 0.40
0.15 | 0.60 -
0.05 | 0.20 =
0.05 | 0.20 -
0.10 | 0.40 -
0.05 | 0.20 -

s}
vy
It
vy

DI DD [ D[ vt | et [ et
|| o) tn| =) 1

Bus data of example 2

Bus No. P | Qo | Po | Qo IVS”l )
(pw) | (pw) | (pw) | (PW) | (pu)
1 - = . - | 102 |0°
2 = - 1 0.60 | 0.30 - =
3 1.0 | - - - [ 104 ] -
4 - - 10.40]0.10 - =
5 s - 1 0.60 | 0.20 - =
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Solution: In this example, we have,
e Bus I isslack bus, Bus 2. 4, 5 are PQ buses, and Bus 3 is PV bus
e The lines do not have half line charging admittances

P2+ jQ2= P2 + jQc2— (Pp2 + jQp2) = - 0.6 —j0.3
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P34+ jQ3 = Pg3 + jQg3— (Pp3 + jQp3) = 1.0 + jQg3
Similarly Py + jQs=—0.4—-j0.1,  Ps+jQs=-0.6—j0.2

The Yy formed by the rule of inspection is given by:

2.15685 | -0.58823 | 0.04j0.0 | -0.39215 | -1.17647
-i8.62744 | +j2.35294 +i1.56862 | +j4.70588
-0.58823 | 235293 | -1.17647 | -0.58823 | 0.0+j0.0
+§2.35294 | -j9.41176 | +j4.70588 | +j2.35294
v _ | 00400 | -117647 | 235294 | 0.0+0.0 | -1.17647
bils = +j4.70588 | -j9.41176 +j4.70588
~0.39215 | -0.58823 | 0.0+j0.0 | 0.98038 | 0.0+j0.0
+j1.56862 | +j2.35294 -i3.92156
“1.17647 | 0.04j0.0 | -1.17647 | 0.0+j0.0 | 2.35294
+j4.70588 +j4.70588 -19.41176

The voltages at all PQ buses are assumed to be equal to 1+j0.0 pu. The slack bus

voltage is taken to be V,° = 1.02+j0.0 in all iterations.

P, - o
v, :YL {LV—D{Qz ¥ Ty Vg — ¥y VU — s Vso}

= 1|00+ J03 £ 658803+ j2.35204) x 1.02£0°}
Y, | 1.0- j00

—{-1.17647 + j470588)x 1.04.20° } - {~ 0.58823 + j2.35294) x 1.02£0°]]
= 0.98140 £ —3.0665° = 0.97999 — j0.0525

Bus 3 is a PV bus. Hence. we must first calculate Qs. This can be done as under:

Q= |V3| |V|| (G,,sind,, — By cosdy, ) + ‘V3‘

v,

(G,,sind,, — By, cosd,,)

+[V,|* (G, sin Sy, — By cos8y,) +|Vi| V.| (G, sin S, — By, cosd,,)
+ |V3| |V5| (G sind,, — B, cosd,,)

We note that 3, = 0% 3, =-3.0665% §;=0°

31=033=03=035=0" B =08;—x): O3 =3.0665°

Q3= 1.04[1.02 (0.04j0.0) + 0.9814 {-1.17647 x sin(3.0665%) — 4.70588

xC08(3.0665°) 141.04{=9.41176 xcos(0°)}+1.0 {0.0 + j0.0}+1.0{—4.70588xc0s(0%) }]

=1.04 [-4.6735 + 9.78823 —4.70588] = 0.425204 pu.

3;=0° and 65=0°

(o2]

Vg,] :L{PS_—O{-QB_YM VIO -Yy Vzl e V40 =Y V50:|
Y Vi
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Y| 1.04-j0.0

[1.0 - j0.4252 .
| | 10— jOA25204 _ & | 7647 + j4.70588)x (0.98140.£ ~3.0665°)}

—{~1.17647 + j4.70588)x (1£0°)}]
= 1.05569 £3.077°= 1.0541 + j0.05666 pu.

Since it is a PV bus, the voltage magnitude is adjusted to specified value and V. is

computed as: V, =1.04 £3.077°pu

| P _.]Q o
V4l :Y_ {; Y,V -Y, Vzl - Y Vsl —Yys V50:|
44

~0.4 + jO.
- 1| Z04+ 01§ 430015+ j1.56862)%1.0220°)
Yo | 10— jO.0

~{(-0.58823 + j2.35294)x(0.98140.£ —3.0665°)}

45293 — j3.83
- 045293 j3.8360 _ ;456715 £-7.303° pu= 0.94796- 0.12149
0.98038 — j3.92156

. :L{P_ﬁ—jes

Y VSG‘ = YSI Vlo = Ysz Vzl = Yﬂ vsl _YS4 V«tl}

L5 () D
= L |Z00% 02 & | 17647 + j4.70588)x 1.02.£0°)
Y, | 10— 00 °

—{-1.17647 + j4.70588)x1.04.23.077°}]
0.994618 £ —1.56° = 0.994249 —j0.027

Thus at end of 1™ iteration, we have.

V,=1.022£0pu V,=0.98140 £-3.066" pu
Vi=1.0423.077° pu V4=0.955715 £ -7.303° pu
and Vs =0.994618 / —1.56° pu

Example-3:

Obtain the load flow solution at the end of first iteration of the system with data as given
below. The solution is to be obtained for the following cases

(i) All buses except bus 1 are PQ Buses

(i) Bus 2 isa PV bus whose voltage magnitude is specified as 1.04 pu
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(i) Bus2 is PV bus, with voltage magnitude specified as 1.04 and 0.25_Q2_1.0 pu.
*
2
_

(& ©

Fig. System for Example 3

Table: Line data of example 3

SB EB B X
(pw) | (pw)
I 2 0.05 | 0.15
I 3 0.10 | 0.30
2 3 0.15 0.45
2 4 0.10 | 0.30
3 4 0.05 0.15

Table: Bus data of example 3

Bus No. Py Qi Vi
(pu) (pu)
1 - — 1.04 2 0"
2 0.5 — 2 —
3 - 1.0 0.5 -
4 — 0.3 — 0.1 —
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Solution: Note that the data is directly in terms of injected powers at the buses. The

bus admittance matrix is formed by inspection as under:

3.0-79.0 | —2.0+j6.0 | —1.0+j3.0 0
—2.0+6.0 | 3.666 —11.0 | - 0.666 + 2.0 | - 1.0 + 3.0
—1.0+j3.0 | —0.666 + j2.0 | 3.666—(11.0 | 2.0 + 6.0

0 “1.0+i3.0 | —20+j6.0 | 3.0-j9.0

Ygus =

Case(i): All buses except bus 1 are PQ Buses
Assume all initial voltages to be 1.0 £ 0° pu.

1 P'p = IQ" o
V, :Y_{_V"—— by ¥ =W ¥ =K, V;)}
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1 Lo.s + j0.2

Y, | L0—j0.0 {20+ je.0)x(1.0420")}

—{~0.666 + j2.0)x (1.0£0° )} - {~1.0 + j3.0)x(1.020° )}
= 1.02014 £ 2.605°

P
Vsl ) ] l: ; "{QS -Y, V=Y Vzl — Y, Vf}
Y33 V3
[-1.0- jO5 _
NS bW (1.0 + j3.0)x (1.0420.0°)}
Y;; | 1.0- jO.0

—{~0.666 + j2.0)x (1.0201422.605°)} - {= 2.0 + j6.0) x (1.0.20° )]
= 1.03108 2 - 4.831°

po_
V.4l = l { . D‘ZQA' Yy VWY, Vzl =Yy V3I }
v,| Vi
0.3+ .
= L9301 £ 0+ j3.0)x(1.02014.22.605° )}
Yo | LO= 0.0

{20+ j6.0)x(1.031082-4.8319)}]
= 1.02467 £ -0.51°

Hence
V! =1.04 20°pu V) =1.02014 £2.605" pu

V) =1.03108 £-4.831° pu V, =1.02467 £-0.51° pu
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Case(ii): Bus 2 is a PV bus whose voltage magnitude is specified as 1.04 pu
We first compute Q,.

Q)= |V2|[|V,] (G, sind,, — B, cosd,, ) +|V,

(G,,sind,, — B,,c0sd,,)

+|Vi| (Gyssin 8y — Byyc0s 8yy) + V| (Goy sin 8y — By, c0s 6y, )]

=1.04[1.04 {-6.0} + 1.04 {11.0}+1.0{- 2.0} + 1.0 {-3.0}= 0.208 pu.

{=2.0+ j6.0)x(1.0420°)}

of {0.5—_}0.208_

27y, | 1.04az0°

—{~0.666 + j2.0)x (1.0£0° )} - {~1.0 + j3.0)x(1.0.20° )}
= 1.051288 + 0.033883

The voltage magnitude is adjusted to 1.04. Hence Vi = 1.04 £ 1.846°

i |10~ joi5 . |
V! = L 1.0+ j3.0)x (1.0420.0°
Y R, { 1.0 £0° { S }

{0,666 + j2.0)x (1.04.21.846°)} - {= 2.0 + j6.0) x (1.0.£0° )]
= 1.035587 £~ 4.951° pu.

1.0+ 3.0)x(1.0421.846° )}

.1 [03+ 0l
v -
Y, | 1.O— j0.0
2.0+ j6.0)%(1.035587£— 4.951°)}]
=0.9985/7-0.178°
Hence at end of 1% iteration we have:

V' =1.04 £0°pu V) =1.04 £1.846" pu

V) =1.035587 £-4.951° pu V) =0.9985 2-0.178° pu
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Case (iii):Bus 2 is PV bus, with voltage magnitude specified as 1.04 & 0.25=Q,=1 pu.
If 0.25 < Q> = 1.0 pu then the computed value of Q, = 0.208 is less than the lower
limit. Hence, Q; is set equal to 0.25 pu. Iterations are carried out with this value of Q.
The voltage magnitude at bus 2 can no longer be maintained at 1.04. Hence, there is
no necessity to adjust for the voltage magnitude. Proceeding as before we obtain at
the end of first iteration,

V! =1.04 £0°pu V) =1.05645 £ 1.849° pu

V! =1.038546 £—4.933" pu V., =1.081446 £ 4.896° pu

Limitations of GS load flow analysis

GS method is very useful for very small systems. It is easily adoptable, it can be generalized
and it is very efficient for systems having less number of buses. However, GS LFA fails to
converge in systems with one or more of the features as under:

« Systems having large number of radial lines

« Systems with short and long lines terminating on the same bus

« Systems having negative values of transfer admittances

« Systems with heavily loaded lines, etc.

GS method successfully converges in the absence of the above problems. However,
convergence also depends on various other set of factors such as: selection of slack bus,
initial solution, acceleration factor, tolerance limit, level of accuracy of results needed, type
and quality of computer/ software used, etc.
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UNIT-V
LOAD FLOW STUDIES II:

NEWTON -RAPHSON METHOD

Newton-Raphson (NR) method is used to solve a system of non-linear algebraic
equations of the form f(x) =0. Consider a set of n non-linear algebraic equations given

by

Jilmi 002, =0 =120 (25)
Letx,”.x,".oox,’.  be the initial guess of unknown variables and
A\‘,O.szo ...... A\‘,,O be the respective corrections. Therefore,

fix"+A0" 2, + A x, "+ A, ) =0 b=, 2.0 (26)

The above equation can be expanded using Taylor’s series to give

. \0 . .
FE et VY L Ax,” + %]AV,H ..... + ai Ax °
- ox, ox, ) ° ox,

+ Higher order terms = 0 Y =120k (27)
= 0 0 L0

Where. di i %) . S {ai\ are the partial derivatives of f; with respect
ox, ax, E)x"}

0

{0 X,.X,......x, respectively, evaluated at (x,°.x,"..........x,"). If the higher order terms

are neglected, then (27) can be written in matrix form as

%]0 % 0 %]o
[ ox,; ) ox, B [Ax? ]
F' 55 | 0 ) 0 ) -0 1
fzo af3 ﬁc'—’_ éf_z AxQO
ox, ox, ox,
e R T R (28)
0 . 5 . 0
_.fn | af" af_" aL _A'xn _
| Lox, ox, ox, ) |
In vector form (28) can be written as
F+J°AX° =0
Or F°=-J°AX"®
Or A= f I R (29)

And X=X AX" (30)

R20A0209
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Here, the matrix [J] is called the Jacobian matrix. The vector of unknown variables is
updated using (30). The process is continued till the difference between two successive
iterations is less than the tolerance value.

NR method for load flow solution in polar coordinates

In application of the NR method, we have to first bring the equations to be solved, to

the form f,(x,.x,...x,) =0, where x,.x,...x, are the unknown variables to be

n

determined. Let us assume that the power system has n, PV buses and n, PQ buses.
In polar coordinates the unknown variables to be determined are:

(i) o, , the angle of the complex bus voltage at bus i, at all the PV and PQ buses. This
gives us n, +n, unknown variables to be determined.

(ii)|V,.|. the voltage magnitude of bus i, at all the PQ buses. This gives us n, unknown
variables to be determined.

Therefore, the total number of unknown variables to be computed is: n, +2n, ., for

which we need n, +2n, consistent equations to be solved. The equations are given

by,

AR =Py B =0 31
AQ, =0 G =0 (32)
Where P, = Specified active power at bus i

Q. ,, = Specified reactive power at bus i

P, ., = Calculated value of active power using voltage estimates.
0, .. = Calculated value of reactive power using voltage estimates

AP = Active power residue

AQ = Reactive power residue
The real power is specified at all the PV and PQ buses. Hence (31) is to be solved at
all PV and PQ buses leading to n, +n, equations. Similarly the reactive power is
specified at all the PQ buses. Hence, (32) is to be solved at all PQ buses leading to n,

equations.

24
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We thus have n; +2n, equations to be solved for n; +2n, unknowns. (31) and (32)

are of the form F(x) = 0. Thus NR method can be applied to solve them. Equations

(31) and (32) can be written in the form of (30) as:
AP [J4, J,] Aé
AQ| | J; 1, AV
Where J,.J,.J,.J, are the negated partial derivatives of AP and AQ with respect

to corresponding & and|V|. The negated partial derivative of AP . is same as the partial

derivative of Peca, since Psp is a constant. The various computations involved are

discussed in detail next.

Computation of P, and Q.

The real and reactive powers can be computed from the load flow equations as:

Pea=PF = ilvi ”VL- |(Gik Cosd, + By sin g, )
=

=G

il

V,-|2 o i|v,.||vk (G, cos S, + By sing, ) (34)
=t

k=i

Qica =0, = Zn: ViiVi |(Gik sin g, — B, cos 5.1- )
k=1
=-B,|V,| + i|v,. V|G sin &, — B, cos &, ) (35)
k=1
k=i

The powers are computed at any (r + 1)” iteration by using the voltages available from

previous iteration. The elements of the Jacobian are found using the above equations

as:

Elements of J;

.}C))% => Vi[V. (G, (~sin 8, )+ B, cos 3, }
S =
— _Qi = Bii|vi |2

oF,

T V.|V, (G, (=sin 8, ) (=) + B, (cos 5, )(—1))
k
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Elements of J3

()Q 2

25, & lG,‘ cosd, + B, sind, )= P, G,.,-'V,.|
k=i

LY V|V |Gy cosd, +B, sind, )

do,

Elements of J,

Py | = LGy + S WAl(Gy cosd, +By sindy )= B+ ¢
k=1
ki

c)'V ylv | =ViVi|(Gy cos S, + By sindy)

Elements of J4

aP

B; +i’V‘ ”Vk ,(Gik sind; — By cosdy )= 0, _|Vi|2
=

00, ‘
a’TQL"Vk =V [Vi[(G, sin 8, — B, cos &, )

Thus, the linearized form of the equation could be considered agai
Ao
AP| |H N A[V‘
AQ| |M L

Vi
The elements are summarized below:

oP.
(i) H.=—=-0.— .
l) i (Jé‘ Q n) i

(i) H, :%—”k —bee, =V |V, |G, sin S, - B, cosd,)
k

o

v

i

(iii) N, =

i} =k, +Gii|viiz

(iv) N, = %'V‘} =aye; +b, f, =|V,|V; (G, cos 6, + By sind, )
k

90
“ 90,

i

(v) :Pi—Giiviz
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DECOUPLED LOAD FLOW

In the NR method, the inverse of the Jacobian has to be computed at every iteration.
When solving large interconnected power systems, alternative solution methods are
possible, taking into account certain observations made of practical systems. These

are,

e Change in voltage magnitude |V,| at a bus primarily affects the flow of reactive

. . i . the
power Q in the lines and leaves the real power P unchanged. This observation

20, oP,
implies that ()’—Q" is much larger than W Hence, in the Jacobian, the elements
V. V.
J

]
of the sub-matrix [N], which contains terms that are partial derivatives of real

power with respect to voltage magnitudes can be made zero.

e Change in voltage phase angle at a bus, primarily affects the real power flow P

over the lines and the flow of Q is relatively unchanged. This observation implies

dP, 0.
that ——is much larger thani. Hence. in the Jacobian the elements of the sub-

0.

i i
matrix [M ] which contains terms that are partial derivatives of reactive power

with respect to voltage phase angles can be made zero. L

These observations reduce the NRLF linearised form of equation to

AS
AP :{H O} A|V| 37)
AQ 0 L W

From (37) it is obvious that the voltage angle corrections Ad are obtained using real
power residues AP and the voltage magnitude corrections |AV| are obtained from

reactive power residuesAQ. This equation can be solved through two alternate

strategies as under:
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Strategy-1
(i) Calculate AP, AQ" and J"

A" {r)
(ii) Compute T“/V(:" :[Jm]‘l{igw;.}

(i) Update & and |V‘

(iv) Go to step (i) and iterate till convergence is reached.

Strategy-2

(i) Compute AP"' and Sub-matrix H'"'. From (37) find A8" = [H‘”]"AP"'
(ii) Up date & using 8" = 8" + A",

(iii) Use 6" to calculate AQ" and "

g A|V”’ [ m]—l (r)
(iv) Compute W: 1 AQ

(v)Update, ’V"*”

:|V(r)

+av®)

(vi) Go to step (i) and iterate till convergence is reached.

In the first strategy, the variables are solved simultaneously. In the second strategy the

iteration is conducted by first solving for AJ and using updated values of o to
calculate A|V|. Hence, the second strategy results in faster convergence, compared to

the first strategy.
FAST DECOUPLED LOAD FLOW

If the coefficient matrices are constant, the need to update the Jacobian at every
iteration is eliminated. This has resulted in development of fast decoupled load Flow
(FDLE). Here, certain assumptions are made based on the observations of practical

power systems as under:
* B; >>G; (Since the X/R ratio of transmission lines is high in well designed

systems)

28
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e The voltage angle difference (5,. -0 j) between two buses in the system is very

small. This means cos (5f = ); land sin (5,. -9, ): 0.0

2

* (Q, <<B;

v,

With these assumptions the elements of the Jacobian become
Hy =Ly = _lvi”vleik (i k)
2
H;=L; = —BiiIVi|
The matrix (37) reduces to

B, Jas]

. 14V]
Bij T

[aP]=v,

1

V.
i

[AQ] = “Vi”Vj

’”

(38)

Where BU and B, are negative of the susceptances of respective elements of the

bus admittance matrix. In (38) if we divide LHS and RHS by |V,.| and assume ’Vj‘ =1

we get,

(39)

Equations (39) constitute the Fast Decoupled load flow equations. Further

simplification is possible by:
e Omitting effect of phase shifting transformers

e Setting off-nominal turns ratio of transformers to 1.0

e In forming B,} omitting the effect of shunt reactors and capacitors which

mainly affect reactive power

e [gnoring series resistance of lines in forming the Ypus.
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With these assumptions we obtain a loss-less network. In the FDLF method. the
matrices [B] and [B”] are constants and need to be inverted only once at the

beginning of the iterations.
REPRESENTATION OF TAP CHANGING TRANSFORMERS

Consider a tap changing transformer represented by its admittance connected in series

with an ideal autotransformer as shown (a= turns ratio of transformer)

Ypq
® " '@®"

Fig. 2. Equivalent circuit of a tap setting transformer

| |
g T g
e q -
il

_._L

Fig. 3. m-Equivalent circuit of Fig.2 above.

By equating the bus currents in both the mutually equivalent circuits as above, it can
be shown that the m-equivalent circuit parameters are given by the expressions as
under:

(i) Fixed tap setting transformers (on no load)

A=Ypy/ a

B=1/a(1/a-1) Ypq

C=(1-1/a) Ypq
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(i) Tap changing under load (TCUL) transformers (on load)
A=Ypq

B=(l/a-1)(1/a+ 1 - Eg/Ep) Ypq

C=(1-1/a) (Ep/Eq) Ypq

Thus, here, in the case of TCUL transformers, the shunt admittance values are

observed to be a function of the bus voltages.

COMPARISON OF LOAD FLOW METHODS

The comparison of the methods should take into account the computing time required
for preparation of data in proper format and data processing, programming ease,
storage requirements, computation time per iteration, number of iterations, ease and
time required for modifying network data when operating conditions change, etc.
Since all the methods presented are in the bus frame of reference in admittance form,
the data preparation is same for all the methods and the bus admittance matrix can be
formed using a simple algorithm. by the rule of inspection. Due to simplicity of the
equations, Gauss-Seidel method is relatively easy to program. Programming of NR
method is more involved and becomes more complicated if the buses are randomly
numbered. It is easier to program, if the PV buses are ordered in sequence and PQ

buses are also ordered in sequence.

The storage requirements are more for the NR method, since the Jacobian elements
have to be stored. The memory is further increased for NR method using rectangular
coordinates. The storage requirement can be drastically reduced by using sparse
matrix techniques, since both the admittance matrix and the Jacobian are sparse
matrices. The time taken for a single iteration depends on the number of arithmetic
and logical operations required to be performed in a full iteration. The Gauss —Seidel
method requires the fewest number of operations to complete iteration. In the NR
method, the computation of the Jacobian is necessary in every iteration. Further, the
inverse of the Jacobian also has to be computed. Hence, the time per iteration is larger
than in the GS method and is roughly about 7 times that of the GS method, in large

systems, as depicted graphically in figure below. Computation time can be reduced if



the Jacobian is updated once in two or three iterations. In FDLF method, the Jacobian
is constant and needs to be computed only once. In both NR and FDLF methods, the

time per iteration increases directly as the number of buses.

Time units

&l
= il
4] NR
2
| - : -
0 40 8]0 120 No. of buses

Figure 4. Time per Iteration in GS and NR methods

The number of iterations is determined by the convergence characteristic of the
method. The GS method exhibits a linear convergence characteristic as compared to
the NR method which has a quadratic convergence. Hence. the GS method requires
more number of iterations to get a converged solution as compared to the NR method.
In the GS method. the number of iterations increases directly as the size of the system
increases. In contrast, the number of iterations is relatively constant in NR and FDLF
methods. They require about 5-8 iterations for convergence in large systems. A
significant increase in rate of convergence can be obtained in the GS method if an
acceleration factor is used. All these variations are shown graphically in figure below.
The number of iterations also depends on the required accuracy of the solution.
Generally, a voltage tolerance of 0.0001 pu is used to obtain acceptable accuracy and
the real power mismatch and reactive power mismatch can be taken as 0.001 pu. Due
to these reasons, the NR method is faster and more reliable for large systems. The
convergence of FDLF method is geometric and its speed is nearly 4-5 times that of

NR method.



Time units
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Figure 5. Total time of Iteration in
GS and NR methods
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No. of iterations
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Figure 6. Influence of acceleration factor

on load flow methods

FINAL WORD

In this chapter, the load flow problem, also called as the power flow problem, has been
considered in detail. The load flow solution gives the complex voltages at all the buses
and the complex power flows in the lines. Though, algorithms are available using the
impedance form of the equations, the sparsity of the bus admittance matrix and the ease
of building the bus admittance matrix, have made algorithms using the admittance form
of equations more popular. The most popular methods are the Gauss-Seidel method, the
Newton-Raphson method and the Fast Decoupled Load Flow method. These methods
have been discussed in detail with illustrative examples. In smaller systems, the ease of
programming and the memory requirements, make GS method attractive. However, the
computation time increases with increase in the size of the system. Hence, in large
systems NR and FDLF methods are more popular. There is a trade off between various
requirements like speed, storage, reliability, computation time, convergence
characteristics etc. No single method has all the desirable features. However, NR
method is most popular because of its versatility, reliability and accuracy.
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